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Role of angular momentum in statistical 
unimolecular rate theory? 

by ERIC E. AUBANEL and DAVID M. WARDLAW 
Department of Chemistry, Queen's University, 

Kingston, Ontario K7L 3N6, Canada 

LING ZHU and WILLIAM L. HASE 
Department of Chemistry, Wayne State University, 

Detroit, MI 48202, USA 

A variety of topics is reviewed with an emphasis on assessment of models and 
discussion of their underlying physical assumptions, rather than on an overview of 
applications. Different treatments of angular momentum in the Rice-Ramsperger- 
Kassel-Marcus theory are surveyed and compared for tight and flexible transition 
states. The influence of angular momentum on thermal reaction rates is examined 
within the framework of variational transition state theory. The vibrational/ 
rotational adiabatic theory of unimolecular decomposition is discussed. Various 
models for product energy distributions are summarized. The nature of non- 
thermal distributions of reactant angular momentum, arising from particular 
experimental techniques, is examined. A brief discussion of theoretical studies of 
vibrational/rotational coupling in the reactant and at the transition state is 
provided. The review attempts to unify advances in the fields of neutral and ion 
unimolecular decomposition. 

1. Introduction 
One of the goals of unimolecular rate theory has been the development of accurate 

theoretical models for calculating properties of unimolecular reactions. The 
monoenergetic unimolecular rate constant k(E) and the partitioning of energy between 
unimolecular reaction products are two properties which have been treated by 
theoretical models. An important feature of any theoretical model are the assumptions 
regarding the relative importance of dynamical versus statistical effects. Rice- 
Ramsperger-Kassel-Marcus (RRKM) theory assumes (Robinson and Holbrook 1972, 
Forst 1973, Hase 1976a, b) that only statistical sums and densities of states need be 
considered in calculating k(E).  Overall, RRKM theory has been quite successful in 
reproducing experimental unimolecular rate constants. Phase space theory (Pechukas 
and Light 1965, Pechukas, Light and Rankin 1966), a model for calculating product 
energy partitioning, also assumes that only statistical effects are important, but it has 
been much less successful than RRKM theory (Marcus 1975, Worry and Marcus 1977). 

Improvements in statistical models of unimolecular decomposition were made by 
researchers treating either neutral or ion decomposition. One of the shortcomings of 
unimolecular rate theory has been the lack of communication between those studying 
these two types of reactants. In many respects, the unimolecular kinetics of neutrals and 
ions are nearly independent research fields. As a result, researchers in one field have 
often failed to recognize and use advances made in the other. This has certainly not 

?Dedicated to Walter J. Chesnavich, in memoriam. 
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250 E. E.  Aubanel et al. 

been beneficial in the development of an accurate statistical theory for unimolecular 
decomposition. In this review, one goal is to give a presentation which unifies the 
advances made in the fields of neutral and ion unimolecular decomposition. 

The remainder of this review is organized as follows. Different treatments of angular 
momentum in RRKM theory are surveyed and compared in sections 2 and 3. 
Application of RRKM theory to thermal unimolecular reactions is reviewed in section 
4. The vibration/rotational adiabatic theory of unimolecular decomposition is 
discussed in section 5. Section 6 surveys the different types of reactant angular 
momentum distributions which arise from non-thermal experimental conditions. 
Models for product energy partitioning in unimolecular dissociation are compared in 
section 7. A brief survey of experimental and theoretical studies of vibrational/ 
rotational coupling is given in the concluding section. 

2. Survey of the treatment of angular momentum in RRKM theory 
In the initial development of statistical theoretical models more emphasis was 

placed on accurately treating the total energy E than the total angular momentum J .  
This is illustrated by the original RRKM expression (Marcus and Rice 1951, Marcus 
1952) for k(E), i.e. 

where Q!o,/Qrot is the ratio of transition state and reactant partition functions for the 
‘adiabatic’ external rotations, El is the vibrational energy of the transition state, E ,  is 
the unimolecular threshold, G(Et)  is the sum of ‘active’ internal states for the transition 
state, and N(EJ + E,) is the density of states for the reactant ‘active’ modes. Following 
earlier work by Rice and Gershinowitz (1934), the ratio of external rotational partition 
functions is assumed to account for the effect of rotational angular momentum. It was 
recognized that equation (1) is incomplete (Weider and Marcus 1962). When equation 
(1) is incorporated into Lindenmann-Hinshelwood theory, the correct high-pressure 
thermal rate expression results, but the expression for the low-pressure limit is 
incorrect. In addition, equation (1) does not provide an interpretation of unimolecular 
rate constants as a function of total angular momentum J (Bunker and Pattengill 1968). 

Improvements to equation (I), which explicitly treat angular momentum, have been 
principally directed to two different types of unimolecular transition states. For 
‘vibrator’ transition states the transition state internal degrees of freedom are treated as 
vibrational modes and torsions with no barriers to internal rotation. In the second type 
of transition state, the dissociating fragments are held together by weak forces and 
rocking/bending degrees of freedom are treated as rotations. This latter type was 
initially called an ‘orbiting’ transition state (Chesnavich and Bowers 1979). However, a 
better name, which also includes the orbiting concept, is ‘flexible’ transition state 
(Aubanel and Wardlaw 1989). 

The importance of angular momentum was recognized in developing variational 
RRKM theory (Bunker and Pattengill 1968, Hase 1983). Here the transition state is 
located at the minimum in the sum of states along the reaction path. For unimolecular 
reactions with well-defined potential energy barriers, the variational transition state is 
normally at the barrier maximum. Reactions with flexible transition states or vibrator 
transition states with low vibrational frequencies usually have poorly defined barriers, 
if any at all, and the variational criterion is of utmost importance in placing the 
transition state. 
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Statistical unimolecular rate theory 25 1 

In the following, treatments of angular momentum for unimolecular reactions with 
vibrator and flexible transition states are reviewed. The variational criterion is not 
explicitly considered. However, some of the expressions presented for the sum of states 
may be used to determine variational transition state structures. 

2.1. Vibrator transition states 
Energy was assumed to be separable between vibration and rotation in initial 

treatments of angular momentum for unimolecular decomposition with vibrator 
transition states. The energy in the active modes (usually all of the vibrations and 
internal rotations) of the energized molecule is denoted by E,, while the energy for the 
adiabatic external rotations is E,. The energy for the active modes of the transition state 
is 

Et = E,+E, -E!  - Eo. (2) 
These energies are depicted in figure 1. With this treatment for angular momentum, the 
unimolecular rate constant becomes a function of both E,  and E, and is (Marcus 1965) 

If the pseudo-diatomic approximation is made for the external rotations (Marcus 
1965), E,  becomes 

h2 
E,  = - 21 J ( J  + l), (4) 

where I is the principal moment of inertia for the reactant approximated as a diatomic. 
An illustration of this approximation is I =pr2  for C2H,, where r is the separation 
between the centres of mass of the CH, moieties and p is their reduced mass. (In this 
article the symbol J will be used for both the magnitude of the total angular momentum 
and the principal rotational quantum number. The authors recognize that this may 
lead to some confusion. However, the use of J for these two quantities is so pervasive 
that any other approach would be even more confusing.) Since total angular 
momentum is conserved during the unimolecular decomposition, the rotational energy 

d 
Figure 1. RRKM theory energy level diagram for a vibrator transition state 
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252 E.  E.  Aubanel et al. 

of the transition state is given by Ef=E,(I /Zt ) .  The active internal energy for the 
transition state is then 

Et = E,  + E,( 1 - Z/Zt) - E,. (5 )  

Equations (3H5) constitute the treatment of angular momentum given in many 
textbooks (Robinson and Holbrook 1972, Steinfeld et al. 1989). 

For a thermal distribution of reactant rotational energies, the average unimolecular 
rate constant was written (Bunker and Pattengill 1968) as 

Equations (3), (5) and (6) were used to interpret classical trajectory simulations 
of the dissociation of triatomics rotating in a plane (Bunker and Pattengill 1968). 
Three-dimensional external rotation was treated (Bunker 1972) by assuming the 
rotational energy can be represented by the classical expression 

3 

i =  1 
E,  = Jf/21i. 

Equations (2) and (3) are then used to calculate k(E,, E,). If the principal rotation axes 
are the same for the molecule and transition state (Hase, Buckowski and Swamy 1983), 

i =  1 
(7) 

In employing equations (2) and (3) to calculate thermal unimolecular rate constants 
versus pressure and temperature, it was proposed (Marcus 1965) that average values be 
used for E ,  and E: instead of integrating over E ,  as is done in equation (6). At the high- 
pressure limit ( E : )  was found to equal fRT/2, where 1=2 for the pseudo-diatomic 
approximation, equation (4). This relationship is approximately correct as the pressure 
is lowered. The average unimolecular rate constant is given by 

where Zt/I is the ratio of the moments of inertia for the degrees of freedom concerned. 
[For asymmetric tops, I and It are determined from the appropriate root of the product 
of the principal moments of inertia, e.g. I=(l$’= lIi)l’n.] Equation (8) has been widely 
used in calculating unimolecular fall-off curves (Waage and Rabinovitch 1970). It is 
incorrect to use equation (8) for non-thermal unimolecular systems (Hase 1976). For 
large non-thermal values of E,, k(E,, E,) becomes independent of E, and the average 
rotational energy of the reacting molecules ( E , )  becomes equal to the average of the 
thermal rotational energy distribution ERT/2, instead of (Zt/I)lRT/2 as given by 
equation (8). Only for concomitant thermal vibrational and rotational distributions is 
it correct to use the latter expression for ( E , ) .  For most non-thermal experiments it is 
probably better to explicitly integrate over E,  as is done in equation (6) than assume an 
average value for either E,  or E!. 

Equation (7) and the use of 1 = 3 in equation (8) notwithstanding, the principal focus 
in the above discussion has been on a pseudo-diatomic model with two external 
rotational degrees of freedom. The third rotational degree of freedom present for 
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Statistical unimolecular rate theory 253 

nonlinear polyatomic molecules is simply neglected. It is instructive to criticize this 
pseudo-diatomic model by considering a symmetric top, whose rotational energy levels 
depend on the quantum numbers J and K according to 

where I ,  = I ,  # I , .  In the previous pseudo-diatomic model, the J-dependent term is 
assumed to be adiabatic. If the K-dependent term is also assumed to be adiabatic, the 
unimolecular rate constant for a symmetric top is written as 

For K =0, equation (10) gives the same rate constant as does the pseudo-diatomic 
model. To determine k(E, J )  from equation (lo), a microcanonical average over K is 
required to give 

I J 

where N ( E ,  J ,  K )  = N [ E  - E,(J, K)] .  
By assuming each K has an equal probability, equation (1 1) becomes 

J 

k(E, J )  = 2 k(E, J ,  K)/(2J + 1). (12) 
K = - J  

In equations (1 1) and (12) the rate constant is written as a function of E and J instead 
of E, and E,, as in equations (2H8). This is because, by averaging over K ,  the total 
energy at a constant J cannot be written as a sum of E ,  and E,. Equations (10H12) 
represent general adiabatic treatments of angular momentum for symmetric tops. They 
have not been widely used to calculate unimolecular rate constants. However, if J is 
small and/or the unimolecular rate constant is rather insensitive to K ,  the pseudo- 
diatomic model, equations (2H5), is expected to give a rate constant similar to that for 
equation (12). Rate constants determined from these two approaches are compared in 
section 3. 

In most applications of RRKM theory, the K quantum number is assumed to be 
active. Two different approaches have been advanced to accomplish this (Zhu and Hase 
1990). One approach, initially presented in studies of C,H, decomposition (Schneider 
and Rabinovitch 1962, Current and Rabinovitch 1963), is to maintain the use of 
equation (3) for k(E,, E,) and to make the energy of the K-dependent term 

E,(K)=- --- KT2(;c ;a) 

active (Forst 1973). The argument made is that, for symmetric (or nearly symmetric) top 
reactive systems, external rotation about the symmetry axis should strongly couple 
with the internal degrees of freedom. Thus, this one external rotation should be treated 
as an active mode. The sum of states for the transition state and density of states for the 
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254 E .  E .  Aubanel et al. 

molecule are then written as convolutions between the densities and sums of states for 
the internal degrees of freedom and the active external rotation: 

where E ,  is the active energy for the energized reactant and Et given by equation (2), is 
the active energy of the transition state. The adiabatic rotational energies E, and E,t are 
given by equation (4), and the total energy is given by E = E , + E , .  This model is the 
same as the above pseudo-diatomic model, except the third rotational degree of 
freedom is no longer neglected, but made active. A shortcoming of this model is that the 
proper restrictions are not placed on K, i.e. - J  < K bJ, as a result of the free exchange 
of energy with the K-dependent term. 

In the second approach (Quack and Troe 1974, Miller 1979, Troe 1983) for treating 
the K-dependent term as an active degree of freedom, the proper limits are placed on 
the K quantum number. The density of states for the energized reactant and the sum of 
states for the transition state are found for total energy E and angular momentum J by 
summing over contributions from all possible values of K ,  i.e. 

I 

G(Et ,  J )  = 2 G[E - Eo - E!(J, K)] 
K = - J  

J 

W E ,  J )  = 1 "E - EAJ, K)1, (15 b) 
K = - J  

where E,(J, K )  is given by equation (9) and a similar expression is used for EJ(J,  K). For 
'almost' symmetric tops, where I ,  % I,, one can use the approximation (Townes and 
Schalow 1955) 

E,(J, K)=(I,'+Z,')[J(J+ 1)-  K2]h2/4+ K2h2/2Z, (16) 

for the rotational energy. The unimolecular rate constant is written as 

and is seen to be identical in form to k(E, J )  for an adiabatic treatment of the K quantum 
number [i.e. equation ( 1  l)]. 

If the variational criterion is not used so that the transition state is fixed along the 
reaction path, k(E, J )  for the K-adiabatic model, equation ( 1  l), is analytically identical 
to k(E, J )  for the second K-active model. However, if the variational criterion is applied, 
this will not be the case. When applying the variational criterion to the K-adiabatic 
model, the G [ E  - Eo - E!(J, K)] in equation (10) is chosen to be a minimum along the 
reaction path for fixed E,  J and K .  Thus k(E, J )  in equation (1 1) will be determined by a 
summation of these minimum sums of state. For the second K-active model, the 
variational criterion involves finding the minimum in G(Et, J )  [equation (15 a)], which 
is a summation over contributions from all possible values of K. Therefore, for the K -  
adiabatic model each G(Et, J ,  K) sum is minimized, but for the K-active model the total 
sum G(Et, J )  is minimized. The K-adiabatic model will give a variational k(E, J )  which 
is less than or equal to that of the second K-active model. 
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Statistical unimolecular rate theory 255 

At first glance, one might suspect that the second model, equation (15), is superior 
for treating the K quantum number as an active degree of freedom. However, this is not 
necessarily so, since a coriolis vibration-rotation interaction can be accounted for, in 
approximate fashion, but the first model, equation (14), but not by the second. For 
many molecules, the moment of inertia for the symmetry axis is strongly dependent on 
the vibrational energy. An example is C2H6, for which rather modest changes in the 
positions of the H-atoms can easily raise or lower the symmetry axis moment of inertia 
by a factor of two. Such an effect will lead to extensive energy sharing between vibration 
and the K-dependent part of the rotation. This energy sharing is treated in restrictive 
fashion by the second model but in unrestrictive fashion by the first. Quantitative 
comparisons between these two models are made in section 3. 

For some analyses (e.g. interpreting classical trajectory simulation), one may wish 
to use the classical mechanical analogues of the above models in treating angular 
momentum. The classical rotational energy can be used directly when calculating 
k(E,, E,.), equation (3), and averaging over E,, equation (6), for the 2-dimensional 
external rotation model. These equations are also applicable to 1-dimensional planar 
rotation, and an analytic expression has been obtained (Bunker and Pattengill 1968)for 
k(E,, T,,,), equation (5),  with a 1-dimensional thermal rotational energy distribution. 
Rotational energy may also be treated classically in the two 3-dimensional external 
rotation models which make the symmetric rotation axis an active degree of freedom. 
In the model which assumes that energy flows freely between vibrational modes and the 
active external rotation, equation (14), the classical expression (Forst 1973) 

1 
h 

N,,,(E) =- (87~~1/E)"~ 

is used for the rotational density of states. The classical analogue for the 3-dimensional 
model with proper constraints on the quantum number K ,  equation (15), is to make K a 
continuous variable so that 

G(Et,J)= G[E-EE,-EEf(J, K)] dK, 

N(E, J)= N [ E -  E,(J, K ) ]  dK. 
J 

2.2. Flexible transition states 
In unimolecular bond ruptures and ion-molecule dissociations such as 

C2H6-t2CH, and Cl-<CH,CI)+Cl- + CH,Cl, the long-range intermolecular forces 
between the dissociation fragments are very weak and highly flexible. A model often 
assumed (Wardlaw and Marcus 1988) for such reactions is that the long-range 
Hamiltonian is separable and can be written as 

12 

H = H", + H,,  + T,, + T,, + 2 + E, + v 2pR2 

where the subscripts u and r signify vibrational and rotational motion for the two 
fragments, Tis rotational kinetic energy, 1 is the orbital angular momentum, p is the 
reduced mass for the two fragments, R is the fragment-fragment centre-of-mass 
separation, E, is the relative translational energy projected on the centre-of-mass 
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256 E. E. Aubanel et al. 

separation and r! which depends on R and the relative orientation of the two fragments, 
is the intermolecular potential. The unimolecular system's total angular momentum J 
is a vector sum of the rotational angular momentaj, and j ,  for the two fragments and 
the orbital angular momentum I, i.e. 

It is often convenient to couple j ,  and j ,  to obtain the total rotational angular 
momentum 

J, = j ,  +jz.  

Most unimolecular bond ruptures and ion-molecule dissociations have no 
potential barrier (or only a poorly defined barrier) in the long-range intermolecular 
potential. For such cases, the variational version of RRKM theory (Hase 1983), which 
locates the transition state at the minimum in the sum of states along the reaction path, 
should be used. The energy level spacings for the rotational and orbital motions of the 
two fragments are quite small and it is often an excellent approximation to treat these 
motions classically (Wardlaw and Marcus 1988, Klippenstein and Marcus 1987, Hase 
and Wardlaw 1989). In contrast, the vibrational frequencies for the two fragments are 
usually sufficiently high that the vibrational energy H ,  = H,, + H,, must be treated 
quantum mechanically. Thus, the sum of states along the reaction path is written as the 
convolution 

G(Et, J )  = G,(Et - E,)N,(E,) dE,, (23) 1: 
where G,(Et-Er)  is the quantum mechanical sum of states for the intramolecular 
vibrational motions of the two fragments, N,(E,) is the classical density of states for the 
fragments of intermolecular rotational/orbital motions, Et = E - V(R), and V(R) is 
assumed to be the reaction path potential. (The authors realize that some confusion 
may arise from using the subscript r to represent the fragments rotational/orbital 
motions, as well as the reactant rotation, as in the previous section. However, in the 
original literature r is used for each of these rotations and it was felt additional 
confusion would arise by changing either symbol.) In solving equation (231, two 
boundary conditions, due to conservation of total angular momentum, equations (21) 
and (22), arise, and are given by 

II - JrI d J d I + J,, (24 4 
l j ,  -j, I G Jr dj1 + j z .  (24 b) 

In the first treatments of unimolecular dissociations with flexible transition states 
ion-molecule dissociations were considered and the variational criterion was not used. 
Instead, a statistical unimolecular rate constant was formulated in terms of the 
association cross section for the two fragments by invoking the principle of detailed 
balance for the decomposition and association steps (Klots 1971, 1972, 1976, 
Chesnavich and Bowers 1977a, 1979). To calculate the association cross section it is 
assumed that the long-range potential is isotropic and given by 

C 
V(R)= --. 

R" 

The cross-section is determined using the Langevin model by choosing I ,  with J 
constant, so that the maximum in the effective potential [12/2pR2 + V(R)] is equal to the 
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Statistical unimolecular rate theory 257 

initial relative translational energy. By assuming the long-range potential is isotropic, 
one has to only consider the angular momentum constraints, and not the relative 
orientations of the fragments, in calculating the associated cross-section. Since 
trajectories orbit if placed at the maximum in the effective potential, the above 
treatment has often been referred to as an orbiting transition state model. 

To outline this orbiting transition state model, the unimolecular reactant will be 
identifed by a and the product fragments by 6. The cross-section associated with 
formation of a collision complex with angular momentum J ,  from reactants with 
relative translational energy E, and rotational energy E:, from Langevin theory, is 
(Chesnavich and Bowers 1977a, 1979) 

where N:(E,, E:, J) is the density of angular momentum states in 6 for the conditions 
discussed above. The sum of angular momentum states at a given E,, = E, + E: is related 
to the above density by 

G:(Etr, J )  = N:(Et, Er, J )  d& (27) s 
By employing the principle of detailed balance, the unimolecular rate constant for 

decomposition of the collision complex to product fragments with relative transl- 
ational energy E,  can be determined from the above cross section, equation (26), and is 
given by 

E - E o  

IT [ N,b(E - E,  - E,  - E:)N:(E,, E:, J )  dE: 

when CT is the reactant to product symmetry number ratio and the lower limit on the 
integral, E, f ,  occurs at the minimum value of E: for which N:(E,, E:, J ) >  0 at the fixed 
value of E,. 

Integrating equation (28) over E, yields k(E, J), which is given by 
E - E o  

J E L  
k(E, J )  = hN(E - E:) 

Here, the lower limit on the integral, E?,, occurs at the minimum value of E,, for which 
the sum of angular momentum states G:(E,,, J )  > 0. The term G:(E,,, J )  can be written as 

where the sum of states T(ET, J,) arises from the integration of the fragment rotational 
density of states N,(Er, J,)  over E, within the range defined by the angular momentum 
coupling restrictions of the Langevin model. The energy EF is also defined by the 
Langevin model and is given by 

p l ( n  - 2 )  

tr 1 ’ 
E : = E  -~ 

when ,A. is a collection of constants. For n=4,  1= 16p2c/h4. 
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258 E.  E.  Aubanel et al. 

Analytic expressions for T(ET, J,)  have been derived (Chesnavich and Bowers 
1977b, 1979) for different types of fragments with the assumption that the long-range 
intermolecular potential is isotropic. The specific fragment types considered are linear- 
atom, sphere-atom, linear-linear, sphere-linear and sphere-sphere. For the purpose of 
obtaining T(E,*, J,), symmetric and asymmetric top fragments can be accurately 
represented by a spherical top, by using the root-mean moment of inertia in the 
appropriate expression for T(E,*,J,). For kach of the above fragment types, the 
integration over J ,  is analytic in equation (30), but the integrations over E,, and 1 in 
equations (29) and (30) must be performed numerically. 

It is useful to emphasize and review some of the features of the above model. First, 
the approach used is non-variational, so that the minimum in the sum of states along 
the reaction path is not used to find the transition state structure. Instead, it is assumed 
that the long-range intermolecular potential is isotropic and the transition state is 
placed at the centrifugal barrier. The assumption that the long-range potential is 
isotropic is most likely only valid for ion-molecule reactions dominated by isotropic 
ion-induced dipole potentials. For radical-radical and other types of ion-molecule 
reactions (e.g. ion-dipole) there is considerable anisotropy in the long-range potential. 
Also, in general the variational criterion does not locate transition states at rotational 
barriers. Reactions with isotropic long-range intermolecular potentials may be 
exceptions to this rule, but such a possibility has not been systematically investigated. 

Variational RRKM calculations have been performed for the Hamiltonian in 
equation (20) with anisotropic intermolecular potentials (Wardlaw and Marcus 1984, 
1985, 1986, 1988, Klippenstein and Marcus 1987, 1988,1989, Aubanel and Wardlaw 
1989,1990, Song and Chesnavich 1989,1990). To find the minimum in the sum of states 
along the reaction path, the density of states for the intermolecular rotational/orbital 
motions, N,(E,) in equation (23), is treated classically and, for non-linear fragments, is 
given by 

N,(E1)=(2J + 1)(27~)-~cr' 1.. . Jdj1 dj2 dl dJ, dk1 dk2 A(J, Jr, I )  A(J,,j~,jJ d(ffc1- El, 

(32) 
where dcc is the volume element for the angle variables conjugate to the angular 
momentum variables in equation (32), and 0 is a symmetry number. The integrations 
over the angular momenta are restricted both by energy conservation and the triangle 
inequalities, equations (21) and (22), each A being unity when the relevant inequality is 
fulfilled and zero otherwise. The quantity k, is the projection ofj, on an axis fixed in 
fragment i; this axis is most conveniently chosen to be one of the principal axes. If the 
fragment is a symmetric top, then ki is most naturally taken to be the projection ofj, on 
the symmetry axis, simplifying the evaluation of equation (32). Each ki is restricted by 
the condition lkil <ji and by energy conservation. H,, is the part of the Hamiltonian in 
equation (19) that refers to the intermolecular rotational/orbital motions and is given 
by 

Equations (15b), (16), (23) and (32) are used to calculate k(E,  J ) .  Since the potential V 
depends on the relative orientation of the two fragments, evaluation of equation (23) via 
equation (32) is necessarily numerical; Monte Carlo integration methods have been 
effectively used in this regard. 
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Statistical unimolecular rate theory 259 

3. Comparison of methods for calculating Y E ,  J, K )  and Y E ,  J) RRKM rate constants 
3.1. Vibrator transition states 

In this section different methods are compared (Zhu and Hase 1990) for treating 
angular momentum when calculating RRKM unimolecular rate constants for reactive 
systems with a well-defined potential energy barrier at which a vibrator transition state 
is placed. If K is a good quantum number, the unimolecular rate constant for a 
symmetric top depends on E,  J and K and is given by equation (10). The term Zc- - Za- 
in equation (9) is positive and negative for prolate and oblate tops, respectively. Thus, 
E,(J,  K )  increases for a prolate top and decreases for an oblate top, as K is increased. As 
a result, increasing K lowers the active vibrational energy for a prolate top, but 
increases it for an oblate top. Thus, for a fixed E and J, one expects the variation of the 
rate constant to depend on whether the reactive system is a prolate or oblate top. 

The reactions C,H, +H + C,H, and C6H6 - H+H + C6H6 are used here to 
represent prolate and oblate systems, respectively. Each is treated as an ‘almost’ 
symmetric top according to equation (1 6). The reactant and transition state parameters 
used for ethyl radical decomposition have been given previously (Hase and Schlegel 
1982). The parameters for the C6H6-H radical system, are those for an assumed model 
and are listed in table 1. To determine unimolecular rate constants, the Beyer- 
Swinehart algorithm (Beyer and Swinehart 1973, Stein and Rabinovich 1973) is used to 
make a direct count of sums of states for the transition states. The Whitten-Rabinovitch 
semi-empirical expression (Robinson and Holbrook 1972) is used to calculate densities 
of states for the energized reactants. Tests were made and show that using the Whitten- 
Rabinovitch approximation, instead of making direct counts of the state densities, 
results in rate constants that are in error by less than 5%. 

Table 1. Parameters for the C,H,-H+H+C,H, model system. 

Radical Transition state 

Frequencies, cm ~ 3068 995 
3063 (2) 992 

3047 ( 2 )  849 (2) 
1596 (2) 703 
1486 (2) 673 
1326 606 (2) 
1310 410 (2) 
1178 (2) 3058 
1150 1079 
1038 (2) 998 
1010 

3062 975 (2) 

Moments of inertia, amu-A2 

E,, kcal mol- 38.0 

88.7, 88.7, 177.4 
Symmetry number 1 

3068 995 
3063 (2) 992 

3047 (2) 849 (2) 
1596 (2) 703 
1486 (2) 673 
1326 606 (2)  
1310 410 (2) 
1178 (2) 400 
1150 370 
1038 (2) 
1010 

3062 975 (2) 

93.6, 93.6, 179.5 
1 
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260 E. E.  Aubanel et al. 

3.1.1. k(E, J , K )  rate constants 
Rate constants were calculated for C,H, dissociation versus K for values of the J 

quantum number equal to 5 , 1 5  and 30, and for total energy E equal to 38.5,40,45 and 
50kcalmol-'. For J equal to 5 the rate constant k ( E , J , K )  is independent of K .  
Increasing J to 15 and 30 results in rate constants which depend on K, and the effects 
are illustrated in figures 2 and 3. As shown in figure 2, for J = 15 and E = 38.5 kcal mol- ' 
there is an increase in k(E, J ,  K )  as K increases, until the rate constant becomes zero for 
K >9. In contrast, for J = 30 and E = 45 and 50 kcal mol- ', figure 3, k(E, J ,  K) decreases 
as K is increased. For E of 38-5 and 40 kcal mol- ' and J = 30, the k(E, J ,  K )  are zero. 
The discontinuities in some of the k(E, J ,  K )  plots arise from discontinuities in the sum 
of states for the transition state at small values of Et = E - E ,  - E!(J, K ) .  

1 

7 . 0 1 :  I i i : ;  ; I 6.0 
0 3 6 9 12 15 

Figure 2. Plots of k(E,  J ,  K )  for C,H, +H + C,H, dissociation. J = 15 and E equals 3 8 5  (O), 40 
K 

(0), 45 (O), and 50 kcal mol- (H). For E of 38.5 kcal mol- ', k(E,  J ,  K )  is zero for K > 9. 

1 
i 

9.0 4 

6.0 1 I I I I I I 
0 5 10 15 20 25 30 

Same as figure 2, except J=30. All the k ( E , J , K )  are zero for E of 3 8 5  and 
K 

Figure 3.  
40 kcal mol - 
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Statistical unimolecular rate theory 26 1 

2.5 

Values of k(E,  J ,  K )  were calculated for C,H,-H decomposition as a function of K 
for J = 5 ,  15 and 30 and E=39, 40, 45 and 50kcalmol-'. As found for C,H, 
decomposition, for J = 5 the rate constant k(E, J ,  K )  is insensitive to K .  However, for 
J = 15 and 30 the quantum number K does affect k(E, J ,  K )  as illustrated in figures 4 and 
5. With J =  15, the rate constant decreases with increase in K at the lowest energy of 
39 kcal mol- ', but increases with increase in K at the higher energies. Raising J to 30, 
results in k(E, J ,  K )  values which decrease with increase in K at 39 and 40 kcal mol- ', 
but increase with increase in K at 45 and 50kcalmol-'. 

The plots in figures 2-5 show that the K-dependence of the unimolecular rate 
constant is different for the C,H, prolate top and C,H,-H oblate top systems. 
However, one should be careful before drawing any general conclusions from these 

~ ~ . . . . . . . . . . . . . . . . . . . ~ 0 ~ * 0 0 * 0 * 0 0  

I I I I I I 

m m . m m m m m m m m m . m m  

o n o o o o o o o o o o o o o  
5.0 

4*0j 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

2.01 I I I I I I I I I ! I ,  I I I 
0 3 6 9 12 15 

K 
Figure 4. Plots of k(E,  J ,  K )  for C6H6-H+H +C,H6 dissociation. J = 15 and E equals 39 (O), 

40 (0), 45 (O), and 50 kcal mol- '. 

5.5 1 
o o o o o o o o n o o o o o o o o o o o o o o o o o o o o n  9 1  - 

0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  0 0  

K 
Figure 5. Same as figure 4, except J = 30. 
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262 E.  E.  Aubanel et al. 

results. For example, the K-dependence of the rate constant is also affected by the 
relationship between the reactant and transition state moments of inertia. For the 
C2H5 system, Z,zsIi and I , < l d .  Thus, for C,H5 decomposition E,(J, K )  will become 
increasingly larger than E f ( J ,  K )  as K is increased. However, for the C,H,-H system 
I ,  zsZi and I ,  z ZL, so that E,(J, K )  and Ef(J, K )  are approximately the same for all 
values of K. We expect that for most reactions an interpretation of the K-dependence of 
k(E, J ,  K) will require an analysis of how both the sum of states and the density of states 
vary with K. 

3.1.2. k(E, J )  rate constants 
In section 2.1, adiabatic and active, and two- and three-dimensional angular 

momentum models are described for calculating k(E, J ) .  An additional approximate 3- 
dimensional adiabatic rotation model is considered here. However, instead of 
approximately averaging over K as is done in equation (12), an average rotational 
energy ( E , ( J ) ) ,  is subtracted from the total energy to give 

The average rotational energy is written as 
.I E,(J,K) 

<Er(J, K)>K zK 5- (35 a) 

where 

For interpreting values of k ( E , J )  it is useful to have an approximate rotational 
temperature T, which corresponds to the value of J .  A relationship between T, and J is 
found from the thermal rotational energy, i.e. 

2 

Using equations (35) and (36) yields 

2J(J + 1)h2(1, + z, 1/2). 
9kB 

T,= 

The different models considered here for treating angular momentum when 
calculating k(E, J )  for vibrator transition states may be classified according to 

2D/adiabatic Equations (2H5) 
3D/adiabatic Equation (1 1) 
3D/approx. adiabatic-I Equation (12) 
3D/approx. adiabatic-I1 Equation (34) 
3D/K, active-I 
3D/K, active-I1 Same as 3D/adiabatic 

Equations (3), (1 4) and (1 8) 
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Statistical unimolecular rate theory 263 

It should be noted, as discussed above, that the 3D/K, active-I1 model is only identical 
to the 3D/adiabatic model for fixed transition states. 

To compare these models and to  illustrate the effect of J on unimolecular rate 
constants, k(E, J )  values were determined for C,H,-+H + C,H,, C,H6-H+C6H6 + H, 
and CH3SiH3+CH4+SiHz dissociation, and are listed in tables 2 4 .  Sums and 
densities of state were evaluated as described above, and the reactants and transition 
state parameters used to calculate k(E, J )  values for C2H, and C,H,-H are those given 
above. Ab initio reactant and transition state parameters (Gordon and Truong 1987) 
are used to calculate k(E ,J )  for CH,SiH,+CH, + SiH, dissociation. 

The effects of J on the k(E, J )  values are mixed, and are amply illustrated by the 
calculations for C,H, dissociation in table 2. At E = 38.5 kcal mol- ' increasing J from 
0 to 5 increases k(E ,J ) ,  which is also observed at E=40-0kcalmol-'. The effect 
observed by further increasing J to 15 at  E = 40.0 kcal mol- depends on the model. 
For some models k ( E , J )  increases, while for others k ( E , J )  decreases. At E=45 
kcalmol-', k ( E , J )  for each model decreases as J is increased. The same result (not 
listed) was found for E = 50 kcal mol- '. The results for C,H,-H dissociation are the 
same as those for C,H, dissociation, except at  E = 40 kcal mol- ' where all the k(E, J )  
values decrease with increase in J .  Overall, the results for CH3SiH, dissociation, table 
4, mirror those for CzH5 and C,H,-H. At low levels of vibrational excitation and small 
values of J ,  the rate constant increases as J is increased. For larger values of E,  k(B, J )  
decreases with increases in J .  

Table 2. Values of k ( E , J )  predicted by different models for C2H5+H+C2H4t. 

Model 

Angular momentum quantum number J 

0 5 15 30 

2D/adiabatic 
3D/adiabatic 
3D/approx. adiabatic-I 
3DIapprox. adiabatic-I1 
3D/K, active-IS 

2D/adiabatic 
3D/adiabatic 
3D/approx. adiabatic-I 
3D/approx. adiabatic-I1 
3D/K, active-I$ 

2D/adiabatic 
3D/adiabatic 
3D/approx. adiabatic-I 
3D/approx. adiabatic-I1 
3D/K, active-I$ 

E = 383 
2.59 x 107 
2.64 x 107 

2.64 107 
1.26 107 

5.79 107 
5.88 x 107 
5.88 x 107 
5.88 107 
3.13 x 107 

1.23 109 
1-19 109 
1.19 109 
1.19 109 

2.64 x lo7 

E=40 

E=45 

7.88 x lo8 

9.88 x lo8 
8.75 x lo8 
8.63 x 10' 
8.72 x lo8 
6.27 x lo8 

4.98 x lo8 
3.29 x 10' 
2.70 x lo8 
2.01 x 108 
3.03 x 10' 

t Rate constants and energy are in units of s- ' and kcalmol- ', respectively. J = 5,15 and 30 

$ The rate constants for the 3D/K, active-I1 model are the same as those for the 3D/adiabatic 
correspond to rotational temperatures of 47, 373 and 1447 K, respectively. 

model. 
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Table 3. Values of k(E,J) predicted by different models for C6H6-H+H+C6H6t. 

Angular momentum quantum number J 

Model 0 17 50 97 

2D/adiabatic 8.84 x lo2 9.41 x lo2 0 0 
3D/adiabatic 8.84 x 10’ 9.31 x lo2 0 0 
3D/approx. adiabatic-I 8.84 x 10’ 931 x lo2 0 0 
3D/approx. adiabatic4 8.84 x lo2 9.31 x lo2 0 0 
3D/K, active-If. 4.56 x lo2 4.80 x lo2 0 0 

2D/adiabatic 4.07 x lo3 3.78 x lo3 8.47 x lo2 0 
3D/adiabatic 4.07 103 3.74 103 1.28 103 0 
3D/approx. adiabatic-I 4.07 103 3.75 x 103 1.22 x 103 0 
3D/approx. adiabatic-I1 4.07 103 3.74 103 7.78 x 102 0 
3D/K, active-If 2.27 103 2.10 x 103 4.43 x 102 0 

2D/adiabatic 2.00 105 1.79 x 105 9.07 x 104 4.97 x lo3 
3D/adiabatic 2.00 105 1.83 105 1.06 x 105 1.64 x lo4 
3D/approx. adiabatic-I 2 m X  105 1.83 105 1.05 x 105 1.37 x 104 
3D/approx. adiabatic-I1 2.00 105 1.83 x 105 1.07 x 105 1.18 x lo4 
3D/K, active-I$ 1.27 105 1.13 10s 5.60 x 104 279 x lo3 

E = 38.5 kcal mol 

E = 40 kcal mol 

E = 45 kcal ma1 

t Rate constants and energy are in units of s and kcal mol - ’, respectively. J = 17,50 and 97 

f. The rate constants for the 3D/K, active-I1 model are the same as those for the 3D/adiabatic 
correspond to rotational temperatures of 46, 387 and 1444 K, respectively. 

model. 

Table 4. Values of k(E, J )  predicted by different models for CH3SiH3+CH4+SiHzt. 

Model 

2D/adiabatic 
3D/adiabatic 
3D/approx. adiabatic-I 
3D/approx. adiabatic-I1 
3D/K, active-If. 

2D/adiabatic 
3Diadiabatic 
3D/approx. adiabatic-I 
3D/approx. adiabatic-I1 
3D/K, active-If 

2D/adiabatic 
3D/adiabatic 
3D/approx. adiabatic4 
3D/approx. adiabatic-I1 
3D/K, active-If 

~~ 

Angular momentum quantum number J 

0 5 15 30 

1.04 104 
1.04 x 104 
1.04 x lo4 
1.04 x 104 
4.05 103 

559 x 106 
5.59 x 106 
559 x 106 
5.59 x 106 
2.99 x lo6 

E=74 
1.04 104 8.63 103 
1.05 x 104 6.35 x 103 
1.05 104 6.22 x 103 
1.05 x 104 6.84 x 103 
4.06 x 103 3.32 x 103 

7.34 105 6.75 x 105 
7.15 105 5.66 x 105 

7.13 105 5 5 1  x 105 
357 105 3.27 x 105 

E=80 

7.15 x lo5 5.61 x lo5 

E=85 
5.55 x lo6 
5.46 x lo6 
5.45 x 106 
5.46 x lo6 
2.96 x LO6 

5.26 x lo6 
4.62 x lo6 
4.59 x 106 
4.56 x lo6 
2.80 x lo6 

4.82 103 
1.35 103 
1-12 x 103 

1.77 103 
0 

4.39 x 106 
2.93 x lo6 
2.73 x lo6 
244 x 106 
2.32 x lo6 

t Rate constants and energy are in units of s ’ and kcal mol- respectively. J = $ 1 5  and 30 

$The rate constants for the 3D/K, active-I1 model are the same as those for the 3D/adiabatic 
correspond to rotational temperatures of 25, 201 and 778 K, respectively. 

model. 
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Statistical unimolecular rate theory 265 

There are distinguishable relationships between the rate constants for the different 
models considered in table 2 4 .  The relationship between the rate constants for the 2D 
and 3D adiabatic models can be understood by considering the K-dependence of the 
rotational energy E,(J, K) .  Since E,(J, K )  increases with K for a prolate top, the prolate 
top’s average rotational energy at each J is larger for the 3D/adiabatic model than for 
the 2D/adiabatic model. Thus, for values of E and J where k(E, J, K )  decreases with 
increase in K ,  the k(E, J )  rate constants for the 3-D adiabatic models are expected to be 
smaller than those for the 2-D adiabatic model. This is the result observed for C,H, and 
CH,SiH, in tables 2 and 4, except for the smallest values of E and J .  A similar line of 
reasoning for the C,H,-H oblate top system explains why the 2D/adiabatic rate 
constants are smaller than those calculated with the 3D/adiabatic model. 

Of the two 3D/approx. adiabatic models, model I more accurately averages over K 
than does model 11. Significant differences arise between these two models for large 
values of J ,  where model I1 gives rate constants substantially too small. A particularly 
interesting result is the extensive agreement found between the 3D/adiabatic 
model and 3D/approx. adiabatic-Z model. For small values of J ,  the k(E, J )  for the two 
models are in exact agreement. As J is increased, the k(E, J )  for the correct adiabatic 
model become larger, but the largest difference observed here is only 20%. However, 
one expects the differences to increase as J is increased. 

Of the two models which treat the K quantum number as an active degree of 
freedom, model I, which allows energy to flow freely between the K degree of freedom 
and the vibrations, has the smaller rate constant. As discussed in the previous section, if 
all anharmonic and vibrational rotation couplings are included in calculating the sum 
and density of states, the 3D/K, active-I1 model will give the correct microcanonical 
k(E, J ) .  However, these corrections are seldom made and are not made here. Thus, we 
are unable to judge which of the two K-active models gives the more accurate rate 
constant. 

3.2. Flexible transition states 
Sections 2.1 and 3.1 are concerned with vibrator transition states placed at well 

defined potential energy barriers. Such transition states are typically tight, meaning‘ 
that the transition state structure does not deviate substantially from the reaction path 
geometry at the barrier maximum. The transition state structure thus has essentially 
constant moments of inertia in terms of which the overall (rigid rotor) rotational energy 
of the transition state is readily specified. Ifboth the reactant and transition state can be 
modelled as symmetric tops with correlated moments of inertia, then it may be a good 
approximation to treat K as an adiabatic quantity. As the transition state loosens, its 
structure becomes less rigid and its moments of inertia are no longer constant. An 
example of this arises in the context of vibrator transition states: namely, the moment of 
inertia about the symmetry axis can be strongly dependent on the vibrational energy, 
e.g. C,H,. This presumably leads to extensive energy sharing between vibration and the 
K-dependent part of the overall rotation. For flexible transition states there are 
generally multidimensional hindered rotations of the two product fragments relative to 
each other; for truly loose transition states the fragments undergo free rotation. In such 
cases the transition state structure can only be defined in terms of the relative 
separation of the fragments since the moments of inertia for overall rotation of the 
transition state complex are not constant but depend on the fragments’ relative 
orientation. The flexible transition state is not a single structure but is instead a set of 
numerous different structures each of which has different moments of inertia and 
different orientations of principal axes. The total angular momentum J remains a 
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266 E.  E.  Aubanel et al. 

conserved quantity but it is not possible to assign a unique overall rotational energy at 
the transition state, as can be done for vibrator transition states. It is also clear that the 
quantum number K associated with a symmetric top cannot, in general, be defined for a 
flexible transition state so that the issue of K being active or adiabatic becomes 
irrelevant. Note that K does not appear in the density of states expression, equation 
(32), for flexible transition states. ( K  associated with overall rotation is not to be 
confused with k , ,  k ,  of the fragments in equation (32)). 

In flexible transition state theory (FTST), the rotational energy is most simply 
expressed in terms of individual fragment rotations and the relative orbital motion [see 
equation (20)]. For non-rigid molecular systems in which there are free and/or hindered 
internal rotations, the (instantaneous) overall moments of inertia depend on the relative 
orientation of the components and the corresponding body-fixed principal axes are not 
normally aligned with the principal axes of the components. Rotational kinetic energy 
expressions in which the overall and internal contributions can be simply and 
separably expressed in terms of constant (orientation-independent) moments of inertia 
are thus generally not possible. In special cases, such as a rigid frame with 1-d internal 
rotations which leave the overall moments unchanged (Pitzer and Gwinn 1942) or 
orientationally averaged structures having a higher symmetry than the unaveraged 
structures (Wardlaw 1982), it becomes possible to assign unambiguously overall and 
internal rotational energies (if rotation-vibration coupling is neglected). When the rigid 
frame or averaged structure has a symmetric top, as is often the case, overall rotational 
energy can be conveniently expressed in terms of J and K .  For an averaged structure K 
must be regarded as an effective or pseudo quantum number whose significance is 
unknown at present. 

3.3. Vibrator us. JEexible variational transition states 
In section 3.1 vibrator transition states are used for unimolecular reactions with 

well-defined potential energy barriers. Since many variational transition states are 
loose, resembling the products, and the Hamiltonian for flexible transition states 
[equation (20)], has the correct form for the product asymptotic limit, one expects that 
for these cases flexible transition states to be more accurate than vibrator transition 
states. However, for some loose transition states the vibrator transition state may be 
sufficiently accurate or, possibly, even more accurate than the flexible transition state. 

One possible inaccuracy in the flexible transition state treatment arises from the 
classical state counting for the transitional modes, equation (23). However, when tests 
have been made the quantum correction has been found to be quite small, e.g. CH,+H 
+ CH, (Hase, Mondro, Duchovic and Hirst 1987) and C,H6+2CH, (Klippenstein 
and Marcus 1987). Implicit in the transitional model Hamiltonian (equation (20)), is the 
assumption of rigid fragments within which description FTST provides an exact 
(classical) accounting of the transitional modes. However, as the fragments associate, 
coupling between the transitional and conserved modes (which is explicitly neglected in 
FTST) is expected to become increasingly significant. From a normal mode perspec- 
tive, the transitional modes begin to combine linearly with the vibrational modes of the 
fragments to form the incipient molecular normal modes of vibration. Closely 
associated with such coupling is non-rigidity of the fragments. These considerations 
raise questions about the relative accuracy of equation (20) at small separations but no 
quantitative assessment has yet been undertaken. 

Here the vibrator and flexible treatments of variational transition states are 
compared for CH,+H+CH,, Li+(H,O)-+Li+ +H,O, and Li+[(CH,),O]+Li+ 
+(CH,),O dissociation (Zhu et al. 1990). The potential energy surface used for these 
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Statistical unimolecular rate theory 267 

calculations are described in Hase et al. (1987), Mondro et al. (1986) and Vande Linde 
et al. (1987), respectively. The values of k(E, J )  for the flexible variational transition state 
treatment are determined as outlined in section 2.2. To locate the transition state and 
calculate k(E, J )  for the vibrator treatment, the transitional modes, whose vibrational 
frequencies vary along the reaction path, are treated as quantum harmonic oscillators. 
The 3D/K, active-l model, equation (1 l), is used to calculate the vibrator k(E, J) .  

Ratios of vibrator and flexible variational transition state theory rate constants 
k(E, J ) ,  i.e. kvib/kflex, are given in tables 5,6 and 7 for CH,, Li+(H,O) and Li+[(CH,),O] 
dissociation, respectively. The largest value of J considered for CH, dissociation is 40 
and corresponds to T, [equation (38)], of 2000 K. For Lif(H,O) and Li+[(CH,),O] 
dissociation, the largest values J of 80 and 120 correspond to T, of 2000 and 2100K, 
respectively. For CH4+H + CH, the k(E, J )  values are smaller for the vibrator 
transition state than for the flexible transition state, with the kvib/kflex ratio nearly equal 
to unity for small E(w). The most probable value for kvib/kflex is approximately 0.8, and 
its smallest value is nearly 05 .  The ratio kvib/kflex decreases with increase in E(w) for 
small J ,  but increases with increase in E(w) for large J .  

For Li+(H,O) dissociation the largest difference between the vibrator and flexible 
transition state k(E, J )  values is approximately a factor of two and occurs at the smallest 
E( a). However, in contrast to CH, dissociation, here the vibrator transition state 
k(E,  J )  is always larger. The kvib/kflex ratio has the same trend at each J for Li'(HzO) 
dissociation. The ratio first decreases with increase in E ( a )  and then slowly increases. 

Table 5. Comparison of pCVTST rate constants for CH4+H +CH, determined with vibrator 
and flexible transitions states. 

kviblkflex 

E(m1-t J = O  J =  10 J = 2 0  J = 3 0  J = 4 0  

0.44 
0.7 1 
1.18 
1.78 
2.97 
3.57 
5.74 
5.95 
7.43 
8.92 
9.77 

11.48 
12.71 
15.88 
19.06 
20.08 
24.44 
29.32 
34.2 1 
39.70 
47.64 
55.58 
63.52 

0.944 
0.781 
0.754 
0.647 
0.720 
0.745 
0.741 
0.726 
0.73 1 
0.738 
0.7 15 
0.7 15 
0.709 
0.705 
0.723 
0.719 
0715 
0.7 17 
0.720 
0.702 
0.704 
0.707 
0.707 

0.978 
0.833 
0.905 
0.863 
0.810 
0.792 
0.814 
0.79 1 
0.808 
0.795 
0.776 
0.791 
0.78 1 
0.775 
0.761 
0.763 
0.773 
0.770 
0.747 
0766 
0.771 
0757 
0.75 1 

- 

- 

- 

0.592 
0743 
0.75 1 
0.834 
0.824 
0.844 
0.827 
0.824 
0.8 15 
0.8 18 
0.805 
0.786 
0.786 
0.814 
0.792 
0.766 
0782 
0.786 
0773 
0.75 1 

- 

- 

- 

- 

- 

0.620 
0.730 
0.713 
0.739 
0.798 
0.767 
0.786 
0.795 
0.793 
0.799 
0.803 
0.847 
0.81 1 
0.820 
0.820 
0.8 18 
0.8 13 
0.769 

- 

- 

- 

0.516 
0.540 
0.678 
0661 
0.69 1 
0.702 
0.729 
0.765 
0.775 
0837 
0.801 
0.830 
0.828 
0.832 
0.849 
0.811 

t Total energy of the products above their zero-point level. 
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268 E.  E.  Aubanel et al. 

Table 6. Comparison of pCVTST rate constants for Li+(H,O)-+Li+ + H,O determined with 
vibrator and flexible transition states. 

J = 2 0  J = 4 0  J = 6 0  J = 8 0  

0.18 2.13 
0.22 1.89 
0.33 1.85 
0.44 1.71 
0.47 1.76 
0-7 1 1.52 
0.95 1.41 
1.18 1.40 
1.77 1.36 
2.30 1.32 
2.97 1.37 
3.44 1.47 
3.9 1 1.53 
4.46 1.53 
459 134 
5.74 1 44 
5-86 1.45 
5.95 1.42 
6.35 1.41 
7.82 1.50 
8.61 1.56 
953 1.64 
9.77 1.66 

11.48 1.65 
12.71 1.62 
14.66 1-64 
15.88 1.61 
19.55 1.68 
23.82 1.69 
31.76 1.71 

2.20 2.56 
2.01 2.48 
1.90 2.01 
1.85 1.95 
1.99 1.99 
1.74 1.71 
1.67 1.67 
1.65 1.59 
1.50 1.43 
.142 1.39 
1.43 1.38 
1 44 1.36 
1.46 1.39 
1.50 1.43 
1.48 1.41 
1.49 1.40 
1.51 1.42 
1.49 1.40 
1.47 1.39 
1.46 1.38 
1.47 1.40 
1.53 1.46 
1.55 1.47 
1.57 1.50 
1.59 1.52 
1.62 1.52 
1.61 1.51 
1.63 1.53 
1.68 1.58 
1.71 1.59 

2.46 
252 
2.17 
1.98 
2.12 
1.78 
1.70 
1.41 
1.39 
1.34 
1.28 
1.27 
1.29 
1.31 
1.31 
1.29 
1.29 
1.28 
1.27 
1.26 
1.28 
1.33 
1.34 
1.37 
1.37 
1.37 
1.36 
1.38 
1.41 
1.42 

2.07 
1.95 
2.27 
2.19 
2.21 
1.92 
1.71 
1.29 
1.35 
1.28 
1.25 
1.26 
1.23 
1.19 
1.27 
1.20 
1.17 
1.17 
1.21 
1.16 
1.20 
1.21 
1.19 
1.20 
1.23 
1.23 
1.24 
1.22 
1.24 
1.26 

t Total energy of the products above their zero-point level. 

The largest value of kvib/kflex ratio for Li+ [(CH,),O] dissociation is four and greater 
than that found for Li+(H20) dissociation. The trend in the rate constant ratio for the 
lithium cationaimethyl ether complex at each J is for the ratio to first increase with 
E(m) and then decrease. The smallest values for the rate constant ratio are at the 
largest J .  

The transition state sum of states for Li+(H20) and Li+[(CH,),O] dissociation 
does not vary strongly as one moves along the reaction path. Thus, since the sum of 
states for the flexible variational transition state is derived in part by a Monte Carlo 
method with an associated numerical uncertainty, there is a resulting uncertainty of 
about 1 A in the position of the minimum in the flexible variational transition state 
sum of states for these ion-molecule dissociations. In contrast, the minimum in the 
transition state sum of states is well localized for CH, dissociation. As a result, a 
comparison is meaningful between the positions of the vibrator and flexible variational 
transition states along the reaction path. This comparison is given in figure 6, where the 
C-H distance is plotted for the vibrator and flexible transition state models. It is seen 
that these two models give similar transition states. 
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Table 7. Comparison of pCVTST rate constants for Li+[(CH,),O]+Li+ +(CH,),O 
determined with vibrator and flexible transition states. 

E ( a ) t  J=O J = 3 0  J = 6 0  J = 9 0  J =  120 

0.2 1 
0.29 
0.43 
0.72 
1.09 
1.35 
2.03 
2.70 
3.31 
4.7 1 
5.07 
6.47 
7.06 
8.28 
9.71 

12-42 
17.65 
21.86 
24.26 
29.73 

2.10 
2.18 
2.36 
2.83 
3.38 
3.4 1 
3.63 
3.85 
3.78 
3.66 
3-71 
3.78 
3.78 
3.58 
3.56 
3.48 
3.28 
3.28 
3.25 
3.25 

2.33 
2.40 
2.55 
2.99 
3.91 
3.82 
3.87 
4.1 1 
405 
3.95 
4-00 
4.0 1 
4.00 
3.78 
3.75 
3.62 
3.39 
3.40 
3.26 
3.20 

2.16 
2.22 
2.36 
2.79 
3.54 
3.48 
3.55 
3.70 
3.65 
3.64 
3.69 
3.75 
3.75 
3.45 
3.45 
3.31 
3.14 
3.18 
3.06 
2.96 

1.88 
1.93 
2.05 
2.45 
266 
2.66 
2.78 
2.65 
2.67 
2.76 
2.82 
2.93 
2.96 
2.50 
2.54 
2.51 
2.36 
2,45 
2.4 1 
2.27 

1.28 
1.54 
1.54 
1.91 
1.65 
1.71 
1.92 
1.56 
1.66 
1.79 
1.85 
1.99 
2.05 
1.51 
156 
1.69 
1.55 
1.64 
1.72 
1.55 

t Total energy of the products above their zero-point level. 

4.0 5 
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4.0 1 
n 

Z s 

0 0 

5 0 
0 

0 

2.0 
0 13 26 39 52 65 

E (kcal/mole) 
Figure 6. Plots of the vibrator (0) and flexible (0) variational transition state theory values of 

the H-CH, bond distance at the transition state: upper, J = 0; lower, J = 40. 
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270 E.  E.  Aubanel et al. 

4. Angular momentum and thermal unimolecular rate coefficients 
The rate of collision-induced gas phase decomposition of a species in excess buffer 

gas, M ,  generally depends on temperature, 7: and pressure, [ M I .  In the high pressure 
limit the rate becomes independent of [ M I  and the overall rate coefficient reduces to a 
Boltzmann average of microcanonical rate coefficients, viz. 

lim k ( T [ M ] ) = k ( T ) =  J = O  2 [ d E m e x p ( E / k B T ) k ( E , J )  QAT) 
[MI + w 

The J-dependence of k(T) is carried by G ( E , J )  and Q,(T), the reactant partition 
function. When G(E, J )  is determined variationally for each (E ,  J )  pair one obtains a 
'microcanonical' variational thermal rate coefficient, denoted kp( T). When the quantity 
in square brackets is determined first and then minimized, one obtains a 'canonical' 
thermal rate coefficient, denoted k,( T). If the transition state location is independent of 
E and J ,  k, = k,, as would approximately be the case for a dissociation reaction having a 
large potential barrier on the reaction path, e.g. H,CO+H, + CO. In SACM, k,(T) is 
obtained by setting G(E, J) in equation (39) to the number of open adiabatic channels. 

At lower buffer gas pressures theoretical models should, in principle, also account 
for the J-dependence of intermolecular energy transfer in collisions between the 
reactant and buffer gas. The importance of including J-dependent energy transfer 
probabilities and conservation of angular momentum in the fall-off and low pressure 
regimes has been stressed in a recent master equation treatment of unimolecular and 
recombination reactions (Smith and Gilbert 1988). Via analytic parameterization of 
master equation solutions, simplified statistical rate coefficient models have been 
developed for these regimes (Troe 1977, 1979, Gilbert, Luther and Troe 1983). These 
models are capable of incorporating angular momentum effects in a modified strong 
collision approximation with or without weak coupling correction. Such a model was 
used, in conjunction with FTST, to represent an extensive set of recombination rate 
coefficients for methyl radical self recombination (Wagner and Wardlaw 1988). 
Although direct experimental studies (e.g. Hippler, Troe and Wendelken 1983) and 
classical trajectory studies (e.g. Bruehl and Schatz 1988) of average energy transfer 
( A E )  have provided valuable insight into factors affecting this quantity, much remains 
to be learned about the dependence of this process on angular momentum. 

In the high pressure limit where dissociation is effectively unimolecular it is 
relatively easy, from a theoretical point of view, to examine the role of angular 
momentum. We do so using the results of several versions of VTST as applied to a few 
neutral-neutral and ion-molecule recombination reactions. (Transition states for 
recombination reactions are the same as for the reverse unimolecular process.) Of 
practical interest are comparisons of microcanonical versus canonical versions of k( T),  
and of separable versus non-separable treatments of the transitional modes in CVTST. 
To emphasize the diversity in the dependence of transition state locations on E and J 
when there is no barrier to recombination, we present contour plots of R*(E,J) ,  as 
determined by pFTST, for three reactions. For CH,+H-,CH, (figure 7) the 
dependence of R f  on J is seen to be weak, whereas R f  decreases with increasing E, as is 
typical of barrierless association reactions. The same behaviour is observed for 
2CH3+C,H,. Such a weak dependence on J can be exploited to reduce the 
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Statistical unimolecular rate theory 271 

Figure 7. Contours of transition state location R' as a function of E and J (units of k )  for 
CH3+H+CH,, obtained using pFTST. The energy is measured with respect to V(c0) 
+zero point energy of the isolated fragments. The fine details of the plot are not 
important, since there is an uncertainty in Rt of about 0.1 8,. The blank region in the upper 
left-hand corner is where E is less than the effective potential. The contour is 0.1 8,. 

Figure 8. Same as 

1 

figure 7 but for Li' +H,O+Li+(H,O), with an uncertainty 
1 8, and with a contour increment of 1 A. 

in R' of about 

computational effort in pVTST applications: one only needs to minimize G(E) = C, 
G(E,J) with respect to the reaction coordinate for a set of E values, rather than 
minimize G(E,J) on grid of ( E , J )  values. Song and Chesnavich (1989, 1990) have 
invoked this approximation in their modification of FTST for triatomic reactants and 
have verified it for HO,-+OH+O and HeH:+HeH++H. In sharp contrast is the 
Li++H,O+Li+(H,O) reaction (figure X), for which the E-dependence of R* is 
generally weak, R* is almost constant for J < 60 but decreases rapidly as J increases 
beyond 60, and the range of R* values (2-14A) is much greater than for CH, + H. The 
contour diagram for another ion-molecule system, Li+ + (CH,),O+Li+(CH,),O 
(figure 9), provides an example of an intermediate case where Rt depends strongly on 
both E and J .  It has been found (Aubanel and Wardlaw 1990) that the gross features of 
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272 E. E. Aubanel et al. 

Figure 9. Same as figure 8 but for Lit +(CH,),O+Li(CH,),O, with an uncertainty in Rt of 
about 3 . k  

the J-dependence of the transition state locations for these three systems (a) can be 
rationalized by a simple analysis of the location and occurrence of centrifugal barriers 
in the effective potential along the reaction coordinate, and (b) are in qualitative 
agreement with the predictions of a simple pVTST model for G(E,J) in which the 
pseudo-diatomic approximation is made for overall rotation (Hase and Wardlaw 1989, 
Hase and Hu 1989, Hu and Hase 1989). 

It is of interest to assess the influence of this varied R f  behaviour and of angular 
momentum conservation on the accuracy of the widely applied CVTST which offers 
the convenience of a single minimization of the quantity in square brackets in equation 
(39) at each temperature. Since the preferred pVTST requires minimization for each 
(E, J )  pair, it tends to be computationally intensive and is often avoided. Theoretical 
thermal rate coefficients for CH, +H-KH,, Li+H,O+Li'(H,O), and Li+ 
+(CH,),O+Li +(CH,),O are plotted in figures 10-12, respectively. We first compare 
FTST evaluations of k ,  and k,. Angular momentum conservation is rigorously treated 
in each case and the two rate coefficients differ only in the application of the variational 
principle, as is discussed following equation (39). As expected, k, < k,  in each case, since 
G(E, J ,  R )  2 G(E, J ,  R f ) .  However, for CH, + H, k ,  is 5-10% larger than k,  (300-2500 K), 
which is to be contrasted with 20-50% for Li+ + H,O (200-1000 K), and N 55% for Li+ 
+ (CH,),O (2W1000 K). For CH, + H the (small) discrepancy between k,  and k ,  is 
primarily attributable to the neglect of the E-dependence of R f  in determining k,; the J -  
dependence of R f  is rather weak (see figure 7). For the ion-molecule reactions the J -  
dependence of R f  is strong and Rt  varies over much larger ranges than has been 
observed for free radical association reactions. This is attributable to the stronger long- 
range intermolecular potential between an ion and a molecule. Consequently, CVTST 
is less accurate with both the E-dependence and the J-dependence of R f  contributing to 
the discrepancy between k,  and k,. Also plotted in figures 10-12 is a CVTST rate 
coefficient, denoted k',, obtained by treating the (two) transitional modes in each system 
as a classical 2-d hindered rotor. On the 20&1000 K temperature range k,  z k', for 
CH, + H, whereas k', is - 15% larger and -25% larger than k,  for Li+ + H,O and 
Li+ + (CH,),O, respectively. These two rate coefficients are expected to be similar since 
each results from a treatment in which no approximation is made to the transitional 
mode potential. The major difference between the two methods is that in CFTST (k , )  
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Figure 1 1 .  Same as figure 10 but for Li' + H,O+Li+(H,O). 
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274 E.  E. Aubanel et al. 

energy and angular momentum conservation are rigorously included, whereas in the 
CVTST of Hase et al. (k:,) a transitional mode partition function is obtained by 
assuming complete separability of the transitional modes from overall rotation. It seems 
reasonable to assume that some of the discrepancy between k, and k:, for the two ion- 
molecular systems is attributable to neglect of angular momentum conservation in the 
separable CVTST model. 

5. Vibrational/rotational adiabatic theory 
The implications of adiabaticity of (fast) motion in coordinates orthognal to the 

reaction coordinate (along which the motion is presumed relatively slow) for the 
validity of traditional transition state theory were first investigated about 50 years ago 
(Hirschfelder and Wigner 1939) but it was 2&30 years before development of so-called 
adiabatic transition state theory occurred (e.g. Eliason and Hirschfelder 1959, 
Hofacher 1963, Marcus 1966). The utility of an adiabatic theory ofchemical reactions is 
twofold. First, it can, under suitable circumstances (system type, initial conditions), 
provide a reasonably accurate description of the bimolecular reaction dynamics. 
Second, adiabatic theory provides a basis for a class of statistical models for 
unimolecular rate coefficients and product properties. It is the latter application which 
concerns us here. 

The implementation of a statistical vibration/rotation adiabatic model is, from a 
formal perspective, straightforward. Practical limitations and ensuing approximate 
implementations are discussed separately below. As in transition state theory, the 
reaction coordinate R is assumed separable from the remaining degrees of freedom. For 
a given E and J and for each value of R the rovibrational eigenvalues E,(R) are 
obtained. For states of a given symmetry type, the result is a set of non-intersecting 
curves, commonly called adiabatic channel curves, which smoothly connect reactant 
( R = R , )  and product (R+oo) rovibrational energy levels. Each E,(R) curve has a 
maximum E Y  at R = R F ,  Re Q R y  Q 00, and each correlates a reactant energy level 
to a particular product energy level. Conservation of J is implicit in this procedure. 
Open adiabatic channel curves are those having E F <  E and the number of such 
channels is here denoted as G,(E, J ) .  The statistical adiabatic rate coefficient. 

is analogous to the corresponding RRKM theory expression [equation (16)]. The 
‘transition state’ of statistical adiabatic theory is, for given E and J ,  delocalized as it is 
associated with a set of R y  values (Quack and Troe 1981). This is to be contrasted with 
RRKM theory in which the transition state location R f  is fixed for given E and J .  The 
energy levels E F  can be used to construct a transition state type pseudo-partition 
function if a canonical implementation of the theory is desired. 

If the intramolecular dynamics of the energized reactant were truly adiabatic, each 
molecular rotational/vibrational state would have a unique individual molecular rate 
constant and would decompose to distinct product states. Many experiments and the 
broad applicability of RRKM theory illustrate that many unimolecular processes do 
not behave in this manner. Thus, two statistical postulates, analogous to those of 
transition state theory, are invoked to obtain equation (40) from the formalism of 
resonance scattering theory (Quack and Troe 1974). First, it is assumed that all reactant 
states in the range (E ,  E + d E )  are equally and strongly coupled to a particular open (i.e. 
one with E > E Y )  product channel; closed product channels are assumed to be 
weakly coupled to reactant states. Second, all open product channels are equally 
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Statistical unimolecular rate theory 275 

probable and have unit transmission probability. The physical implications (Quack 
and Troe 1981) of these assumptions are the following: within the strong coupling 
region, as defined by the locations { R y }  of the adiabatic channel maxima, the 
dynamics is decidedly non-adiabatic and leads to a quasi-microcanonical distribution 
of reactant states. Beyond the strong coupling region, the dynamics is strictly adiabatic 
and no transitions between channels occur. The latter implication is in general 
unrealistic, particularly for channels having maxima near Re and for systems with 
highly anisotropic long-range potentials (Quack and Troe 1981). The inclusion of exit 
channel effects in the prediction of product properties is discussed in section 6. The 
spirit of statistical adiabatic theory is that it provides a potentially reliable way of 
counting product states accessible from reactants in the absence of severe deviations 
form adiabaticity outside the strong coupling region. The effect of non-adiabaticity is 
expected to be greatest near threshold where only a small number of channels is open. 

Determination of rovibrational energy levels on a range of R values requires a 
global potential energy function. These remain generally unavailable although 
potentials based on ab initio calculations now exist for a small but increasing number of 
intensely studied reactive systems. In any case, obtaining the quantum eigenvalues at 
all relevant values of R is clearly not feasible despite continuing improvements in 
computing technology. In order to proceed with this type of model it is necessary to 
introduce further approximations. 

The most well known and widely used such treatment is the statistical adiabatic 
channel model (SACM) which provides an approximate prescription for calculating 
the number of open channels and hence Ga(E, J )  (Quack and Troe 1974). It is assumed 
that the rovibrational eigenvalues can be modelled at any R value via an exponential 
function 

g(R) = ~ X P  C - a(R - Re)] 

Ea(R) = Ea(np, a) + CEa(nr, Re)- Ea(np, co)lg(R) + Ecent(R) + VR), 

(41) 

(42) 

which interpolates between reactant ( R  = Re)  and product (R+ co) eigenvalues: 

where V(R) is the potential energy along the reaction coordinate; np and n, denote the 
totality of internal quantum numbers for motion orthogonal to R for product 
fragments and the reactant molecule, respectively; E,,,, = P(P + 1)/217R) is a centrifugal 
term with P=l+(J - l )g (R) ,  1 is the orbital angular momentum of the fragments and 
q R )  is an R-dependent, approximate moment of inertia. The potential energy surface is 
thus parameterized, in the intermediate region, by a single parameter a which is treated 
as adjustable. In fitting SACM to thermal rate data it was found (Cobos and Troe 1985) 
that a = 1.0 f 0.2 A ~ * described 18 of 26 systems to which a simplified version of SACM 
was applied. The eigenvalues Ea(np, co) and Ea(n,, Re) are usually determined via rigid 
rotor and harmonic/Morse oscillator models of the reactant and product internal 
degrees of freedom. 

The reactant-product correlation nr+(npr 1)  in equation (42) is achieved by pairing 
successively higher energy levels of reactant and product beginning with the lowest 
energy state for each J and subject to the following restrictions: (i) angular momentum 
coupling constraints (i.e. IJ - J,I d 1 d J + J,, where J ,  is defined by equation (22)), and 
(ii) adiabaticity of the conserved vibrational modes (their vibrational quantum 
numbers are independent of R). The latter restriction, although physically unrealistic in 
general, considerably simplifies the correlation scheme, particularly for larger poly- 
tomics. A futher restriction is the correlation of only those states of the same symmetry. 
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276 E. E.  Aubanel et al. 

In practice all states are correlated regardless of symmetry and G,(E,J) is then 
multiplied by an approximate symmetry correction factor. This is reasonable for 
energies sufficiently in excess of the reaction threshold energy (Miller 1983). 

Despite the aforementioned simplifications, direct numerical count for G,(E, J )  
becomes too cumbersome for large molecules because of the large number of energy 
levels to be correlated and the correspondingly large number of channel maxima to be 
located (usually numerically). Subsequent to the original version of SACM (Quack and 
Troe 1974), various additional approximations have been introduced to simplify the 
calculation of rate coefficients within the SACM framework. Several simplification 
schemes are outlined below with reference to the treatment of angular momentum. In 
the earliest such approach (Quack and Troe 1977), thermal rate coefficients k(T) were 
obtained via a maximum free energy criterion. Instead of interpolating between 
reactant and product eigenvalues to obtain adiabatic channel curves, the total free 
energy was interpolated using a function of the same form as equation (41). 
Conservation of total angular momentum is sacrificed in favour of the convenience of a 
separable pseudo-partition function Q* = C, exp [I - E y / k T ] .  The corresponding 
approach to k(E, J )  would involve interpolating G,(E, J )  between reactant and product 
limits and applying a minimum number of states criterion. In a rather different 
approach (Troe 1981,1983) the channel coordinates are assumed separable (initially) in 
their contribution to the channel threshold energy E Y .  For a represenative system the 
pattern of threshold energies for each type of coordinate (i.e. conserved and 
transitional) was analysed, for J=O, and then modelled by an ad hoc empirical 
expression. Convolution of the individual sums of states provides the approximate 
quantity C:(E, J = 0). For J # O ,  G,O(E, J )  is obtained from G:(E, J =0) by displacement 
of the energy scale, E + E  - E,(J), where E,(J) is a centrifugal barrier height. Several 
a posteriori corrections are then applied, including an angular momentum factor which 
compensates for the violation of angular momentum coupling constaints imposed by 
the separation of coordinates. This factor is represented as an interpolation between 
reactant and product correction factors which are readily evaluated. In a recent 
approach (Troe 1987), designed for ion-molecule capture processes at low tempera- 
tures, adiabatic channel curves are determined analytically by perturbation theory or 
series expansion applied to the long-range potential. These curves are functions ofj (the 
molecular rotation quantum number) and 1 (the orbital quantum number) where 
j + l = J .  

6. Angular momentum distribution for non-thermal unimolecular reactions 
The distribution of angular momentum for the unimolecular reactant depends on 

the excitation process. Excitation by electromagnetic radiation can result either in 
broad or narrow angular momentum distributions. The form of this distribution 
depends on the temperature of the unexcited reactants and the resolution of the 
excitation process. In local mode overtone excitation (Crim 1984), such as CH bond 
excitation in CH,N (Reddy and Berry 1977), the unexcited reactants usually have a 
room temperature Boltzman distribution of rotational energies. If the transition 
moments are the same for the unexcited reactant J- ,  K-levels, which is usually a good 
approximation, this rotational energy distribution will be projected on to the 
vibrationally excited reactant. Thus, the reagent rotational temperature is the principal 
determinant of the excited reactant’s angular momentum distribution. 
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Statistical unimolecular rate theory 277 

Reactants excited to a specific J - ,  K-level have been prepared by a two-photon 
process called simulated emission pumping (SEP) (Kittrell et al. 1981). The first laser 
prepares a vibrational level of an excited electronic state. Before this state undergoes a 
spontaneous radiative or non-radiative transition, a second laser with a lower energy 
photon stimulates emission of light and the formation of a highly excited level of the 
ground electronic state. Because of the high resolution of the lasers, individual rotation- 
vibration states may often be prepared. An infrared-optical double resonance 
technique has also been used to prepare specific J- ,  K-levels for an excited reactant on 
the ground potential energy surface (Rizzo 1990). 

A widely used excitation process, but one for which the angular momentum 
distribution of the excited reactant is not well understood, is chemical activation. Here, 
collision complexes are formed by processes such as H+C,H,+C,H, (Hase et al. 
1983), and C1- +CH,Cl+Cl--CH,Cl (Vande Linde and Hase 1990). The distribution 
of the total angular momentum J for the collision complex depends on the rotational 
angular momentum j ,  and j ,  for the collision partners, the collision orbital angular 
momentum 1, and the ‘stereochemistry’ associated with the addition of the j,, j ,  and 1 
vectors in forming the total angular momentum vector J ,  i.e. J =j ,  +j ,  + 1. 

The most understood situation occurs when the rotational angular momenta of the 
collision partners are zero. Thus, the rotational angular momentum distribution of the 
collision complex is simply the distribution of orbital angular momentum which leads 
to complex formation. Classically, the orbital angular momentum is defined in terms of 
reactant relative translational velocity u, and the collision impact parameter b, and is 
given by 1 = p b q  The probability a collision has a particular value of 1 is P(1) = 212/1,$ 
Therefore, if the collision partners have no rotational angular momentum, the 
probability of J is simply the product of P(1) and the probability Pc(l)  of complex 
formation at 1, i.e. 

(43) 
1, 

P(J)  = 2PC(1)? 
1, 

To determine the projection of J on to the collision complex and, thus, K for a 
symmetric top, the preferred orientations of the collision-partners as they react must be 
understood (Parson et al. 1973). Distributions of angular momentum have been 
determined for random (i.e. purely statistical) orientations of the reacting collision 
partners (Miller et al. 1967, Chesnavich and Bowers 1977b, 1979). For collisions 
between two diatomics, such statistical distributions have been evaluated and 
compared to the actual distributions obtained from ensembles of classical trajectories 
(Wardlaw 1982). 

The association dynamics becomes considerably more complex if the collision 
partners have rotational angular momentum. However, the problem is simplified if one 
of the collision partners is an atom (or has zero rotational angular momentum) so that 
the total angular momentum becomes J = 1 + j .  If 1 and j add randomly in forming the 
collision complex, the probability of J (Hase and Wolf 1981) is 

For most reactions it is doubtful that 1 andj  add randomly. As described above, there 
are often preferred orientations for the collision partners. Thus, if j  and its projection k 
are specified for the reactant, there will be a non-random distribution of 1 + j vector 
sums for the collision complex. Also, it has been speculated that on dynamical grounds 
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it may be difficult for a collision complex to accommodate a large value of J .  For the 
H+C=C+H-C-C model system, it was found (Hase and Wolf 1981) that as j for 
C = C is increased H-C-C complexes are preferentially formed from collisions with 
1 + j  angles less than 90", which results in an average J value smaller than the random 
(i.e. statistical) value. 

Overall, very little is known regarding the manner in which the orbital and 
rotational angular momentum vectors add in forming the total angular momentum of 
a collision complex. However, to calculate accurate RRKM rate constants for collision 
complexes the distribution of J must be known as well as the distribution for the 
projection of J on to the complexes' symmetry axis. This is an area of research, 
concerning angular momentum in unimolecular rate theory, where much more work 
needs to be done. 

7. Product properties 
A description of unimolecular processes complementary to that provided by 

average rate coefficients for decomposition to a particular product arrangement is 
provided by product property distributions within that arrangement. A complete list of 
such properties is extensive and includes vibrational, rotational and translational 
energies, various angular momenta, and the relative orientation of pairs of vector 
quantities, e.g. the angle between two angular momentum vectors. To simplify 
discussion and focus attention on the ideas behind various models for product 
properties, we shall consider only product rotation and vibration. Furthermore it is 
rotational/vibrational quantum number distributions which have been measured 
directly in recent photodecomposition experiments on hydrogen peroxide (Rizzo et al. 
1984, Ticih et al. 1986, Brouwer et al. 1987), nitrosyl cyanide (Noble et al. 1984, Nadler 
et al. 1985, Qian et al. 1985, Klippenstein et al. 1988) and ketane (Green et al. 1988, 
Klippenstein and Marcus 1989). In each case experimentally derived distributions were 
compared to a statistical distribution derived from variational RRKM theory, phase 
space theory or the statistical adiabatic channel model. The reader is referred to the 
individual papers and to a review by one of us (Wardlaw and Marcus 1988) for analyses 
of several of these comparisons between theory and experiment. 

Little is known about the dependence of product properties o n J  since in most 
experimental studies, including those cited above, a thermal distribution over J was 
unavoidable. Current experiments (Rizzo 1990), which provide OH rotational 
quantum number distributions resulting from decomposition of a particular ( J ,  K )  
rotational state of H,Oz, offer the first opportunity for assessing J-dependence of 
product internal energy distributions. 

The relative population of product states with energy Ei in internal mode i is 

where F(E, J )  is the total number of quantum states accessible to the dissociated system 
for the given (E ,  J) ,  and F(E, J ;  E i )  is the corresponding number of accessible states 
having energy Ei in mode i (Quack and Troe 1975). Each of the three models mentioned 
earlier and described briefly below relies directly or indirectly on G ( E , J )  to obtain 
F(E, J )  and F(E, J ;  Ei), and hence P ( E ,  J ;  Ei). As such, explicit treatment of the total 
angular momentum is not required since the sum of states G already accounts, in 
principle, for conservation of this quantity. 
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Statistical unimolecular rate theory 279 

7.1. SACM 
Since all ‘open’ channels are assumed to be populated with equal weight and all 

reactant and product states are correlated, product properties follow trivially: 

P(E, J; Ei)  = G,(E, J; E,)/G,(E, J). (46) 
The effort of this approach is concentrated in the correlation process and in the 
determination of the number of channels open at the given E (Quack and Troe 1975). 

7.2. Phase space theory 
In this widely applied model, all product states are assumed to be populated with 

equal probability subject to the constraints that (a) the orbital angular momentum is 
less than a critical value (determined by E and the long-range potential) above which 
the separating fragments cannot surmount the centrifugal barrier, and (b) total angular 
momentum is conserved. The former constraint makes phase space theory formally 
equivalent to loose transition state theory wherein the transition state is located at the 
top of the centrifugal barrier. As such, the only ‘exit channel’ effect is a coupling between 
translation along the relative separation coordinate and orbital motion of the 
fragments; all orbital rotational energy at the transition state is converted to relative 
translational energy of the products. For such systems several related (classical) models 
for the translational energy distribution of separated products are available (Safron 
1972, Holmlid and Rynefors 1977, Wardlaw 1982). The simplicity of these models 
relative to rigorous application of phase space theory is attributable to an approximate 
treatment of angular momentum conservation. 

7.3. Variational R R K M  theory 
A wide range of transition state locations is found in the application of variational 

transition state theory to dissociation reactions having no barrier to the reverse process 
of association. Accordingly one must, in the general case, allow for the influence of exit 
channel couplings in order to predict the properties of separated products based on the 
transition state distributions embodied in G(E, J) .  Two ways to accomplish this in 
approximate fashion are outlined below. One models the effect of exit channel 
dynamics within the framework of FTST and the other handles the exit channel 
dynamics explicitly using classical trajectories. 

7.3.1. FTSTmodel 
A model for product vibrational and rotational distributions based on VTST was 

introduced by Wardlaw and Marcus (1988). Subsequently Marcus (1988) constructed a 
refined version which successfully describes rotational quantum number distributions 
of products arising from the decomposition of NCNO (Klippenstein et al. 1988) and 
CH,CO (Klippenstein and Marcus 1989). It is the latter model which we describe here. 
The conserved modes are assumed vibrationally adiabatic (as in SACM) after passage 
through the transition state and, consequently, the distribution of vibrational quantum 
numbers for the products is that at the transition state. The transitional modes are 
assumed non-adiabatic between the variationally determined transition state and a 
loose transition state determined by the orbital angular momentum 1 and the radial 
potential. Beyond this loose transition state the transitional modes are treated as 
adiabatic. For energies below those needed to yield vibrationally excited products, the 
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phase space theory distribution of product rotational states is obtained. At energies 
above the vibrational excitation thresholds, the product rotational state distributions 
are generally expected to differ from those of phase space theory. 

7.3.2. Trajectory model 
RRKM theory assumes that the relaxation dynamics of the molecule is sufficiently 

rapid to maintain a microcanonical distribution of states at the transition state. 
Trajectory initial conditions could, in principle, be selected uniformly from this 
transition state distribution and an ensemble of trajectories propagated to the product 
region, provided that the potential energy surface from the transition state region to the 
asymptotic region is available. Product property distributions would then be readily 
extracted from the trajectory final conditions. Such an approach is difficult to 
implement in general, because of the complexities of sampling from a microcanonical 
distribution in a region intermediate between reactant and product. It has however 
been applied to a 3-atom system in a study of post barrier effects on energy exchange 
(Rynefors 1982). An alternative approach has been proposed by Hamilton and Brumer 
(1985) who choose to initiate a microcanonical set of trajectories in the product region 
and propagating this ensemble towards the parent molecule. The initial conditions for 
these ‘time reversed’ trajectories are readily determined via standard quasi-classical 
techniques and represent a phase space theory distribution. One retains those 
trajectories which reach a (predetermined) transition state and discards the remainder, 
leaving an ‘exit channel corrected’ ensemble which is implicitly assumed to correspond 
to a microcanonical distribution at the transition state. Product internal energy 
distributions are then extracted from this corrected phase space theory set of trajectory 
initial conditions. The well-known problem of violation of zero point energy 
conservation by classical trajectories (Bowman et al. 1989, Miller et al. 1989) is ignored 
in this model, although it is not expected to be a serious one for the direct processes (i.e. 
short-time dynamics) involved here. 

8. Conclusions 
8.1. Summary 

In this review we have given a historical perspective of various treatments of 
angular momentum, as used in statistical rate theories to calculate attributes of 
unimolecular reactions. RRKM, phase space, and statistical adiabatic rate theories are 
considered. The treatment of angular momentum in RRKM theory is reviewed for both 
vibrator and flexible transition states. The latter type of transition state is particulary 
important for simple bond dissociation reactions without saddle points. Several 
illustrative applications of RRKM theory are given. 

For the most part, in calculating RRKM unimolecular rate constants for vibrator 
transition states the vibrational and rotational motions have been assumed separable. 
Diatomic, and K-active and K-adiabatic symmetric top models have been used to 
represent the rotational kinetic energy. One K-active model includes a vibrational- 
rotational coupling effect. These different models may yield considerably different 
k(E, J )  unimolecular rate constants, e.g. tables 2 4  

The treatment of the angular momentum associated with flexible transition states 
for unimolecular bond ruptures and ion-molecule dissociations such as CH,+H 
+CH, and Li+(H,O)+Li+ +H,O is reviewed. For ion-molecule reactions a tra- 
ditional approach has been to place the flexible transition state at the centrifugal 
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barrier, i.e. an orbiting transition state. In a more complete analysis one should 
consider the anisotropy of the long-range intermolecular potential for the dissociating 
fragments and use variational RRKM theory to calculate the transition state structure 
as a function of E and J .  In the variational flexible transition state approach of 
Wardlaw and Marcus (1988), the angular momenta for the individual fragments, for the 
relative orbital motion, and for external rotation are correctly coupled. This approach 
is compared with more approximate methods of calculating high pressure thermal 
unimolecular rate constants. 

Both vibrator and flexible transition states have been used to calculate variational 
RRKM k(E, J )  unimolecular rate constants. These two approaches are compared here 
for CH4+H + CH,, Li+(HzO), and Li+[(CH3)z0]-+Li+ +(CH,),O dissociations. 
The difference between the vibrator and flexible transition state k(E, J)’s decreases as J 
is increased for ion-molecule dissociations. This is not a pronounced effect for methane 
dissociation. 

A brief description is given of statistical adiabatic theory for calculating uni- 
molecular rate constants and product energy partitionings. Approximate procedures 
for calculating the adiabatic potential energy curves and counting the number of open 
channels are considered. Additional assumptions are usually required to calculate 
product energy distributions from RRKM theory. If the transition state is located at 
the centrifugal barrier, the only additional assumption is that orbital angular 
momentum is conserved between the transition state and products. For vibrator or 
flexible transition states located inside the centrifugal barrier, different postulates can 
be made regarding the degree of non-adiabaticity and coupling between vibrational 
and rotational degrees of freedom as the reactive system proceeds from the transition 
state to products. Classical trajectories can be used to provide a dynamical treatment of 
this non-adiabatic coupling. 

There is currently an incomplete understanding of the form of the angular 
momentum distribution for unimolecular reactants prepared by chemical activation, 
e.g. F + C,H,+C,H,F. This distribution is affected by the anisotropy ofthe reagent 
intermolecular potential and dynamical correlations between the reagent orbital and 
rotational angular momenta. Another outstanding issue, considered below, is the 
treatment and significance of vibrational-rotational coupling in unimolecular rate 
theory. 

8.2. Rotation-vibration coupling 
The coupling between rotation and vibration enters unimolecular rate theory in 

two ways. First, it influences the dynamics of intramolecular energy transfer whose 
relative rapidity is central to the validity of statistical models. Recent experimental 
studies (e.g., Rizzo 1990, Farley et al. 1988) and theoretical studies (e.g., Sahm and Uzer 
1989, Shirts 1987, Ezra 1986, Uzer et al. 1985) are beginning to probe the role of 
rotation in the energy redistribution process. Second, such a coupling influences energy 
levels and hence sums and densities of state which in turn determine the RRKM rate 
coefficient. Of these two aspects, we shall consider only the latter; the former, although 
of fundamental importance, is deemed to lie beyond the scope of this review. 

The absolute and relative values of rovibrational energy levels in a separable 
treatment of these two types of motion will generally differ from the corresponding 
values in a treatment which accounts for rotation-vibration coupling. Although the 
strength of such a coupling is expected to increase with J at least for small and 
intermediate J ,  little is known about the associated J-dependence of energy level 
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Figure 13. Ratio of the approximate (assuming separation of vibration and rotation) to exact 
flassical sum of states for a rotating Morse oscillator. 
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Figure 14. Coupling coefficients as a function of the C-H separation R for CH, + H +CH,. The 
transition state region is located between the dashed lines. 
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patterns. Both the density of states (reactant) and sum of states (transition state) are 
affected by these patterns, making intuitive predictions concerning the effect of 
rotation-vibration coupling on microcanonical rate coefficients difficult. Although 
statistical theories of unimolecular reactions can in principle account for this 
phenomenon, most implementations do not; quantum implementations are intractable 
whereas classical ones are inconvenient and numerically intensive. The density of states 
N appearing in the denominator of the microcanonical rate expression is almost always 
obtained by separating reactant vibration from rotation and using the equilibrium 
geometry to assign an overall (rigid) rotational energy. When the reactant molecule 
contains enough energy to dissociate this is certainly bound to provide a poor 
description. Strong evidence for this claim has been found in a comparison of statistical 
model lifetimes to trajectory results for the dissociation of a long-lived collision 
complex (Wardlaw 1982). The sum of states G appearing in the numerator of the 
microcanonical rate expression also usually relies, explicitly or implicitly, on a rigid 
body approximation for rotational energies. For example, in SACM the adiabatic 
channel curves are interpolations between rigid rotor-harmonic oscillator (RRHO) 
levels of reactants and products; in FTST the vibrational angular momentum of the 
conserved modes in the separating fragments is ignored despite the exact (classical) 
treatment of the transitional modes and adherance to angular momentum coupling 
restrictions. Troe (1983) has derived various approximate multiplicative factors 
designed to correct for effects which are neglected in standard RRHO treatments of 
sums and densities of state. These depend on ( E , J )  and include an anharmonicity 
correction and an angular momentum coupling factor to account for the violation of 
angular momentum coupling restrictions in separable treatments. As noted by Troe, 
such simplified correction schemes are arbitrary in certain respects and may be of 
insufficient accuracy when high precision is required. 

We conclude with two numerical examples which explore the significance of 
rotation-vibration coupling for unimolecular rate theory. The first is a comparison of 
the exact classical sum of states for a rotating Morse oscillator to that resulting from a 
separation of vibration and rotation (Song and Chesnavich 1989). The ratios of the 
approximate to exact sum of states for models of three diatomics are plotted as a 
function of a reduced energy in figure 13. The separable sum of states is seen to become 
increasingly smaller than the exact result with increasing energy. The ratio is 0.8-0.9 
when the energy is half the diatomic dissociation energy. Under thermal conditions the 
reliability of the separable treatment will depend on temperature which provides a 
convenient estimate of the aoerage energy of a particular mode or fragment. 

In the second example we examine the coupling between rotation and tran- 
sitional/conserved modes in methane decomposition: CH,+CH, + H. Coupling 
coefficients between the reaction coordinate and the various modes orthogonal to the 
reaction path and between pairs of these modes were obtained as a function of the 
reaction coordinate and the various modes orthogonal to the reaction path and 
between pairs of these modes were obtained as a function of the reaction coordinate in 
the transition state region (Wardlaw 1990) using a J = O  reaction path Hamiltonian 
(Miller et al. 1980) on the so-called Hirst potential energy surface (Hase et al. 1987). 
Since C,, symmetry is preserved along the reaction path, states corresponding to 
different irreducible representations do not interact and have coupling coefficients 
which are identically zero (Miller 1983). Since the rotation about the symmetry axis is 
the only degree of freedom corresponding to the A, irreducible representation, it does 
not couple to any other degree of freedom. The doubly degenerate rotation about axes 
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perpendicular to the symmetry axis (irreducible representation E )  can couple to the 
following (double degenerate) modes of the H . . . . CH, complex: CH, stretch, CH, ‘in- 
plane’ bend, and the transitional mode which is a CH, rock in the reactant and a free 
rotation of the CH, product. Nine of fifteen non-zero coupling coefficients are plotted 
in figure 14 as a function of the C-H separation R which, for this system, is found to be 
linearly related to the reaction coordinate. In the transition state region (indicated by 
dashed vertical lines) the rotation-transitional mode coupling coefficient is seen to be 
comparatively large, as could have been anticipated. The rotation-bend and rotation- 
stretch coupling coefficients are consistently smaller than the rotation-transitional 
mode coupling coefficient by approximately a factor of three between the dashed lines. 
It is worth noting that the reaction path Hamiltonian describes the system only in 
vicinity of the minimum energy path, thereby modelling the transitional modes as a 
doubly degenerate vibration. Although the transitional modes are in fact a 2-d 
hindered rotor whose barrier depends on R, one nevertheless expects relatively strong 
coupling between this motion and external rotation. A proper description of the 
transitional modes for this system must account for this coupling as well as the 
hindered nature of the motion. Flexible transition state theory, which has been applied 
to CH, + H+CH, (Aubanel and Wardlaw 1989), is an example of an implementation 
of RRKM theory which accommodates both features. 
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